Thinking about Software

An introduction to software development for non-CS majors

Gary Pollice

ABSTRACT

This paper describes an approach to designing a program rather than simply writing

code until something works. It describes a basic philosophy of creating software as a
product and presents an example component—a state machine—that may be useful
to robotics engineers and other embedded systems engineers.



1. Introduction

Creating software is more than writing code until it does what you want it to do.
It's a creative, yet disciplined, activity that requires precision and design skills. Too
often software is written as a necessary evil, or an afterthought to other parts of a
product, especially when that product is a robot or embedded system developed for
a course. This view is misleading with respect to the expectations that employers
will place on engineers when they enter the workplace. While software engineers
may be part of a development team, one cannot assume this to be the case.
Developing software design and coding skills as part of robotics engineering (RBE)
learning provides the student with skills that enhance their value to prospective
employers and will enable them to confidently assume leadership positions on
development teams.

This paper is the first in a series of documents designed to help RBE students
improve their software development skills. It is divided into the following major
sections:

1. Introduction: this section.

2. Software as product: a fundamental approach and way of thinking about
software as part of the overall product that one must deliver.

3. Designing software: how to consider the abstractions that are represented in
a system and represent them in the software design. This section focuses on
abstraction and application programming interfaces (APIs).

4. Design to implementation: developing the program from the design. This
section includes unit testing topics.

5. Delivery: making the software robust, documented, and ready for production
use.

Throughout the paper we use a single application to illustrate the topics. We
develop a configurable finite state machine (FSM) that one might use in a typical
embedded or robotics system.

2. Software as product

In order to produce high-quality systems, each component of the system must
receive the appropriate amount of design and implementation attention. For RBE,
there are three different types of components that must come together correctly in
order to deliver a working robot. These are the mechanical, electric, and software
components. If any one of the three is not given proper attention, the final system
will exhibit poor quality and fail to meet its requirements.

2.1. Systems Engineering

Robotics and embedded systems are good examples of how hardware and
software are combined to produce a product. Such products are produced by
applying systems engineering (SE).



Systems Engineering is an interdisciplinary approach and means to enable
the realization of successful systems. It focuses on defining customer needs
and required functionality early in the development cycle, documenting
requirements, then proceeding with design synthesis and system validation
while considering the complete problem. (INCOSE)

RBE students already understand multidisciplinary systems. Robot development
combines hardware and software that require mechanical, electrical, and software
engineering skills. One must develop competency in each area to be a successful
robotics engineer. Systems engineering follows a process such as the one shown in
the following diagram:

The Systems Engineering Process

System

G, g [ N o ) [

Re-evaluate Re-evaluate Re-evaluate Re-evaluate Re-evaluate Re-evaluate

T NP S O S S N B

Figure 1. The systems engineering process. (Dean)

Customer State the Investigate Model the Intesrate - Lagl::h . Assess p’g]‘i‘é’“
Needs Problem Alternatives System E g "|Performance Process

One must consider all parts of the system under development in each step of the
process. Notice that there is a feedback loop inherent in the process. While the
process shown in Figure 1 seems quite logical and implies a sequential progression
to the final product, this almost never occurs. In practice the feedback loops are
used frequently to move back and forth between steps in a seemingly random
sequence.

A key practice in building software systems that can be used in the systems
engineering process is called iterative development. The fundamental principle of
iterative development consists of dividing the project into specific periods, called
iterations, during which the development team performs all of the steps in Figure 1
to some degree during the iteration. Depending upon where in the overall project an
iteration occurs, more time might be spent on one step than it would be spent in a
different part of the project. As the project proceeds, the product is developed
incrementally. Some say that the product evolves over time. This approach is very
effective for software development since software constantly changes throughout
the development lifecycle. Software engineering addresses ways of managing such
radical change, especially with recent developments in modern iterative techniques
like the Unified Process and Agile development techniques.

2.2. Iterations and systems engineering

[terations are not appropriate for most RBE assignments and labs. Working
iteratively on term projects and major qualifying projects is certainly appropriate.
For some courses the assignments and labs are similar to iterations for the course



project. This section offers a short description of iterative development. The main
topics of the paper focus on the lower-level activities that one must perform to
produce working software during any single iteration.

An iteration is a specified time period, often called a time box. Project teams use
iterations for planning purposes. Before the start of an iteration, the team plans the
iteration. This activity identifies the goals for the iteration and breaks down the
work into smaller tasks. Individuals or groups of team members work on tasks
during the iteration. At the end of the iteration, the completed tasks become part of
the iteration’s deliverables. The unfinished tasks—even if they are 99% complete—
get moved to a subsequent iteration for completion.

Characteristics of iterations include:

* Hard start and stop times. Iterations are not extended in order to allow tasks
to be completed.

e Varied durations. Iterations do not have to span the same amount of time.
The length of each iteration can vary based upon the amount of work
planned for it.

* The amount of work completed in an iteration is called the iteration’s
velocity.!

* Each iteration results in a working system. Early iterations contain limited,
but working capabilities. These capabilities increase incrementally in each
subsequent iteration.

Short iterations have been shown to be most effective for projects of the scale
that students work on. Such iterations may last between a couple of days and a
couple of weeks. Week long iterations provide a good starting point for student
project teams starting with iterative development.

The iteration plan defines the work planned for a given iteration. Individuals,
or small groups of developers, implement the tasks planned for the iteration.
Tasks define one “piece” of work that can be implemented and tested. Tasks map
to the overall product requirements.

This paper discusses how one might approach implementing a task. This
focus provides information about skills one must master before developing
expertise at higher levels of project development and management.

After selecting a task the developer will formulate a plan for completing the
task. The plan does not have to be written down and often takes form only in the

1 Velocity is a feature of eXtreme Programming (XP) and is used in the XP Planning Game.
The Planning Game is a simple approach to project management and planning for XP
projects. Cara Taber and Martin Fowler, Planning and Running an XP [teration, January
2001, 2 February 2009 <http://martinfowler.com/articles/planningXplteration.html>.




developer’s mind. Good developers formulate such plans naturally and may not
even be aware of the fact that they are following a plan. Their experience leads
them to follow a plan similar to one that they’ve used before—knowingly or
unknowingly—to solve another programming problem. The plan consists of a
series of small steps that lead up to the final solution to the problem. After
completing each step the developer has a partial solution that can be tested for
correctness before continuing to the next step. The task’s implementation
progresses in steps, called increments, to the final solution for the task’s problem.

The decomposition of the work in the manner described may seem like a lot
of work, especially when a task is small. As one gains experience, this process
becomes natural and imposes little or no overhead on the developer’s work.

The rest of this paper describes the implementation of an example problem—a
flexible finite state machine that is common in robotics and embedded systems. First
we need to understand what a FSM is.

A FSM is a model of a system that consists of various states and rules for
transitioning from one state to another. As the “machine” runs it moves from state
to state according to the transition rules. The FSM lets one reason about the system
the FSM models. FSM models take many forms, using many notations. In this paper
we use the Unified Modeling Language (UML). (Object Management Group) UML
provides a formal notation that make communication about software and systems
precise and formal. UML defines several diagrams and associated notation. One
diagram type, the State Diagram, lets us accurately describe a FSM.2

A simple example shows some basic techniques using UML to describe an
FSM. Consider a light switch. The light switch has two states, ON and OFF.
Flipping the switch when the light is off (or in the OFF state) turns the light on
and transitions the FSM to the ON state. Conversely, flipping the switch when the
light is on turns the light off and transitions to the ON switch. The following UML
state diagram describes this system completely.

2 Robert Martin has written a tutorial on UML State Diagrams and how to use them with
FSMs. Robert C. Martin, "UML Tutorial: Finite State Machines," Object Mentor, June 1998,
http://www.objectmentor.com/resources/articles/umlfsm.pdf (accessed February 5,
2009).



switch press

OFF ON

switch press

Figure 2. State diagram for a light switch.

Rounded rectangles represent states. A state has a name (e.g.,, ON and OFF).
States can contain other information, but for now we just need the name. The
directed connectors between states represent transitions that cause the FSM to
move from one state to the next; that is, the active or current state changes.
Events, also called triggers, initiate a transition. The transitions in Figure 2 have
labels that name the triggers.

UML defines much more that one can add to state diagrams. We will use
some of these later in the paper as we need them. Our preference tends to use a
minimal number of features, choosing simplicity and readability over complete,
but complex diagrams.

2.3.2. Arobotics problem

We use a mobile robot example taken from (Jones).3 Consider a mobile robot
similar to the iRobot Roomba®. When the Roomba encounters an object it tries
to move away from the area where the collision occurs. This behavior is called
an Escape behavior. The Roomba is a cylindrical robot with bumpers that
compress when it collides with an obstacle. Bumper compression causes a signal
to trigger the Escape behavior.

We might first try describing the Escape behavior in writing. This takes time
and is prone to error. We might forget some feature of the behavior and have
difficulty uncovering it in a lengthy description. English prose tends to be
ambiguous when used to describe complex technical systems. This means that a
developer might interpret a specification differently from the author’s intended
meaning. A UML state diagram can provide the same information in a more
concise and precise form. Figure 3 shows how the Escape behavior looks in a
state diagram.

3 pp. 63-69.



bumper pressed

( Collision )
Lentry / start reverse

Backing Up
do / reverse
exit / spin

reversing

exit [ reversing
J

bumper pressed spinning

Forward
do / forward

Spinning
do / spin
exit / forward

forward

ahead distance d

Figure 3. Escape behavior FSM.

The solid circle represents the initial, or start state of the FSM. The diagram
describes the following behavior:

1.

When a bumper is depressed, due to the robot encountering some
obstacle, the Escape behavior begins and the system enters the Collision
state.

On entry to the Collision state the robot initiates the actions that cause it
to move in reverse.

Once the robot is in reverse the system transitions to the Backing Up
state.

While in the Backing Up state the robot continues reversing. The
reversing continues until the robot has backed up a specified distance or
stops moving (because it encounters an obstacle behind it).

When reversing finishes, the system initiates the actions to cause the
robot to spin and transitions to the Spinning state.

The spinning state keeps the robot spinning until it has turned a specified
amount.

After the spinning is complete, the robot starts to move forward and the
system transitions to the Forward state.

In the Forward state the robot moves forward until one of two mutually
exclusive conditions occur. If the robot encounters an obstacle, the
system transitions to the Collision state. If this happens, the system
transitions to the Collision state and the process continues with step 2. If



the robot moves a specified distance without a collision, the Escape
behavior finishes. We show this with a transition to the end state (the
solid circle in another circle).

The problem before us requires us to develop software that implements the
Escape behavior. Good developers dislike writing the same software over and
over so they attempt to develop general-purpose reusable solutions. This does
not happen all at once. Software evolves from specific to general purpose use.
The rest of the paper describes the journey of the evolution from developing
software that implements the Escape behavior to a more robust FSM
implementation one could use for many different problems.

3. Designing software

At this point we understand the problem—or at least we think we do.
Engineering students who have not developed software as a product tend to begin
coding the “final” program at this point. One should not avoid writing code, but the
code written at this point rarely becomes part of the final deliverable. Experienced
software developers multitask at this point, performing the following activities:

* Consider what types of data structures and functions fit the requirements
defined by the problem. (Analysis)

¢ Select candidate structures and functions that best fit the requirements and
perceived constraints such as memory constraints and processing time
constraints. (Design)

* Try out the selected designs, measuring the performance and correctness.
(Prototype implementation)

Developer experience plays a major part in design activities. Good developers
have participated in several project, developing software for different systems, and
have catalogued—either consciously or otherwise—the techniques and structures
that worked. They apply this experience by recalling why certain things succeed and
others fail and relate them to the system under development. Computer scientists
and software developers call this area of recognizing and applying such knowledge
design patterns.

3.1. Identify appropriate abstractions

Consider the FSM described in Section 2.3.2. What are some of the words we use
to describe the system? Ones that might come to mind are: state, signal (or trigger),
sensor, action, motor, and others. Not all of these are things we have to consider for
a general purpose FSM, but it’s a good idea to thing as broadly as possible at first.

If we can identify physical elements in the system we have a good start to
understanding the type of software components and structures we need in order to
produce a program that supports those elements. In this example we will certainly
need to have a software representation of a state, so we’ll begin there.



We will describe our initial thoughts about a state by placing the information on
3x5 index cards. The technique is based upon the Class-Responsibility-Collaboration
method of object-oriented design. (Beck and Cunningham) We start with a blank
card and place the name of the object (abstraction) we want to describe on the top.
We then divide the card into two columns. The column on the left contains the
object’s responsibilities. The right column contains the name of other objects the
current one needs to work with in order to fulfill its responsibilities. At this point,
we have a card like the one below.

State

Responsibilities:

Name Collaborator

Next we identify what the State object must do. Inexperienced software
developers and designers tend to add to many responsibilities. They think about all
of the things that the State might be responsible for in some applications and try to
address all of the possibilities in the beginning. This is absolutely the wrong way to
approach the problem! Thinking too broadly at this point can lead to over-analyzing
the problem and a failure to produce any working software. Some call this problem
“analysis paralysis.” This does not mean that you should build a brittle, simple
solution that just gets something to work. It means you should use judgment to
decide when you've done enough analysis to be able to start designing a workable,
maintainable solution. Two phrases, coined by the Agile development community
can help you put things in balance. The first is “You ain’t going to need it” (YAGNI).
The second is “Do the simplest thing that can possibly work.”

Some programmers think that following this advice gives them the right to do
sloppy work or to build incomplete software. In fact, the opposite effect results.
When you build just what the requirements demand and do not add features that
you think might be useful, you have more time to do a good job on the necessary
features. Following the advice helps avoid over-engineering and analysis-paralysis.



Let’s continue thinking about the requirements of the State object. We might
identify the following responsibilities show in Figure 5.

State
Responsibilities:
Name Collaborator
Execute actions Action
Connect to other states State

Figure 5. State and its responsibilities.

Notice that the State object collaborates with Actions. Actions are functions that
execute when a state is entered, exited, or while state is the current state of the FSM.
This leads us to create a card for Action objects. We will also want a card for the
FSM. The CRC cards might look like Figure 6.

The approach thus far works well for object-oriented development. What if our
development language does not have 0-0 capabilities? The approach still works
with some modifications. Objects are simply data structures with associated
behavior. We will focus on the behavior and model our system as a set of functions
that operate on data structures. The data structures become parameters to the
functions. This simulates objects and lets us have multiple instances of the objects.



State

Action

Responsibilities:

Name Collaborator
Execute actions Action
Connect to other states [State

Responsibilities:
Name Collaborator
Execute a function

FSM

Responsibilities:

Name Collaborator
Configure the system [State, Action
Maintain current state [State
Transition to new state|State

Figure 6. The design evolves.

3.2. Defining the structures and functions

Some software developers prefer to develop programs in a top-down manner
while others prefer a bottom-up approach. When working top-down, the developer
creates the “main” module first and then those modules at the next level of
abstraction, and so on until the system is complete. Bottom-up proceeds in the
reverse order—small, independent modules get built first and then the modules that
use the first set, and so on. Good developers work in both modes, depending upon
the type of problem, the programming language, and other factors. Top-down is a
good place to start when we work with procedural languages. In the case of the FSM,
some of the conceptual objects shown in Figure 6 may not require implementation.

3.2.1. Designing the FSM module

In the simplest case we will need a single FSM in any application. We begin
the design by looking at the responsibilities and identifying possible functions
that the FSM module must support. The FSM card in Figure 6 contains three
responsibilities. The following table lists the functions that might provide the
required capability for an FSM.

10



Table 1. Functionality of the FSM.

Responsibility Function Parameters Description
Configure the initializeFSM * nStates Initialize a FSM
system containing the number
of states specified.
addState * state Add the state to the
FSM.
addTransition e fromState | Add a transition
* toState between states on the
* trigger trigger.
Maintain current <None> This will be a by-
state product of normal
operation.
Transition to new transition * trigger Transition to a new

state

state from the current
state when the trigger
occurs

Given the information in Table 1 we can now create the header file for the
FSM module. If you have never approached designing software this way, you
may feel a bit nervous. Several things have not been defined, such as the state,
trigger, and so on. This is normal. In fact, we do have enough information to
begin developing the implementation. The header file—which will not compile
yet—can be written as shown in Listing 1.4

#ifndef FSM H
#define FSM H

Trigger trigger);

#endif /* FSM H */

void initializeFSM(int nStates);
void addState (State state);
void addTransition(State fromState,

State tramsition(Trigger trigger);

State toState,

Listing 1. Initial FSM.h.

With the appropriate comments explaining each function—starting with the
description in Table 1—a reviewer can understand the behavior of the FSM you
plan to implement.

4 For presentation purposes, comments are omitted from the listings.

11




At this point one can proceed to design the components—State and
Trigger—or go into more detail on the FSM component design. We will go one
level into the design of the FSM before turning our attention to the other
components. The details we want to explore involve the internal representation
of the FSM; specifically, how will we represent the actual graph of states and
their transitions. We have already encapsulated the implementation with the
initialize, addState,and addTransition functions. Notice that choosing to
put these functions and responsibilities on the FSM component means that a
state does not have to know anything about how to transition to another state or
even its connected states. The FSM has assumed this responsibility.

How can we represent the states in the FSM in a way that lets us run the FSM
efficiently? We need to find a data structure that allows us to locate any state
quickly and determine if a transition is possible from one state to another. A
search through data structure or algorithms books uncovers a couple of
possibilities. A linked list or other collection of some type can certainly represent
a graph where the nodes are the states. The time to find a specific state can be
prohibitive, especially in systems where the processing time allowed for a task is
a critical resource. We can also represent a graph in a square matrix where the
number of rows and columns corresponds to the number of states. As long as we
do not have a large number of states and few transitions, the cost extra space
required for empty cells in the matrix far outweighs the gains in processor time
to access a state. This seems like a good choice. The FSM in Figure 3 would fit
into a 5 x 5 matrix. We have the four states that contain behavior and the start
state, which can also represent the exit or stop state.

We can number each state in the following way: 0-start, 1-Collision, 2-
Backing Up, 3-Forward, and 4-Spinning. Our matrix would look like the following
where the cells show the connecting states for transitions.

0 1 2 3 4
0
X
1
X
2
X
3
X X
4
X

12



Our representation choice now forces us to make other design choices.
Clearly, every state must have a number that lets us use it as an index into the
matrix. Also, the transition matrix does not indicate which trigger creates the
transition. We will need to address these soon (perhaps you would address
them now). We will come back to this later in the paper, but now that we have a
fairly good idea about how we might structure the FSM, let’s look at what we
need to create the state objects.

3.2.2. Designing the State

According to our preliminary design in Figure 5 the state has two
responsibilities. A little further though shows that the responsibility: Connect to
other states, has been taken care of by the FSM. This leaves only the Execute
actions responsibility.

We have also introduced some other requirements on the state in the
previous section. We need to have some sort of a state number or identifier that
lets us index into the transition matrix. An integer type of some sort will work
fine for this.

Each state has three possible types of actions it needs to execute: entry, exit,
and in-state actions. We can construct a table like Table 1 or we can jump to
creating a header file for the State component. Considering the number of things
we need to do, let’s just create the header file.

#ifndef STATE H_
#define STATE H

typedef short unsigned StateNumber;
typedef void (*ActionPtr) (void):;

typedef struct State {

StateNumber stateNumber;
ActionPtr entryAction;
ActionPtr inStateAction;
ActionPtr exitAction;

} State, *StatePtr;

StatePtr makeState (StateNumber stateNumber,
ActionPtr entryAction,
ActionPtr inStateAction,
ActionPtr exitAction);

#endif /* STATE H */

Listing 2. State.h.

13



Notice that we defined types to represent the state number, the actions, the
structure for the state, and a pointer to a state. You should be familiar with the
use of t ypedef, but you may not be familiar with function pointers like the
ActionPtr. Any C or C++ reference has sufficient information for these, but
you may need to spend some time with the function pointers. The recommended
text for RBE3001-2 has such discussions. (Deitel and Deitel) This will be time
well spent since many algorithms you might need to implement in C require
using such pointers for efficiency.

We now have enough description that we can implement the State module
and test it. Listing 2 shows the implementation of the State module. Since we
want to have the states persist outside of the makeState function, we need to
allocate memory for the structure on the heap. The malloc function does this.
Make sure you know how to use malloc and free before moving on.

#include "State.h";
#include <stdlib.h>

StatePtr makeState (StateNumber stateNumber, ActionPtr entryAction,
ActionPtr inStateAction, ActionPtr exitAction)

StatePtr s = (StatePtr) (malloc(sizeof (State)));
s—->stateNumber = stateNumber;

s->entryAction = entryAction;
s->inStateAction = inStateAction;
s->exitAction = exitAction;

return s;

Listing 2. Implementation of the State object (State.c).

Writing tests for all code you write is a good idea. Test frameworks like CUnit
and CPPUnit can help you do this painlessly. For this paper we will write a single
simple test to make sure that we can create a State object and execute one of its
actions. If the test runs, it gives us confidence that we have written code that
works in some instance and we can continue with the development. We see the
test file in Error! Reference source not found..

14



We can run this test by itself any time we want to. It does not require us to
have the complete FSM implemented. In fact, it only relies upon a very specific
set of capabilities that we have already implemented for the State module. This
type of test is called a unit test. We try to build a good set of unit tests for each of
our modules. We want the tests to run quickly so that every time we make a
change to any of our code we can easily run all of the tests to see if we have
broken anything. If we have broken something, we must fix it before we
continue.

#include <stdio.h>
#include "State.h"

void helloAction (void)
{
printf ("Hello");

void doStateTest ()
{
StatePtr sp = makeState (0, (ActionPtr)O0,
helloAction, (ActionPtr)O0);
(sp->inStateAction) ()

int main ()

{
doStateTest () ;
return 0;

Listing 3. A test for the State module.

If we run our test and see “Hello” on the console, we're good to go. We need
to ask whether we have actually defined the responsibilities of the State module.
We have not. Even though we know that we can execute one of the actions, we
have not provided the behavior in the state module. We need to add three

functions to our State.h file and implement them. Add the following code to
State.h.

vold executeEntryAction (StatePtr state);
void executeInStateAction (StatePtr state);
void executeExitAction(StatePtr state);

Listing 4. Action functions for the State module.

One might ask at this point why we need to implement the functions since we
can execute the state’s functions directly by getting the field from the State

15



structure. First, this encapsulates action execution, making the State responsible
for invoking its own action functions. As a by-product of this encapsulation we
can change the way the state calls the action functions without worrying about
breaking some other part of our system. For example, if we decide that the
current state must be place in some specific location after invoking the exit
action function, we can make that change in executeExitAction and no
other code will be affected.

A second similar, but equally important, reason for the encapsulation is that
it gives us the ability to not worry about how the functions are actually selected
and executed. If you think about the way any FSM works you can imagine the
following sequence of steps repeated as long as the FSM runs:

Enter a state and execute the entry action.
Execute the inStateAction.

Wait for a trigger.

Execute the exit action.

Transition to a new state.

SR

We can implement this code in the FSM module by creating a function called
runFSM. We will implement the function incrementally. The initial increment
contains the code shown in Error! Reference source not found.. This listing
shows the doxygen comments for the runFSM method. We simply transfer the
written specification from above to doxygen format. The functions
waitForTrigger and transition have not been implemented, except to
create a stub that does nothing. This allows us to compile the code we already
have. We also had to revise our original declaration of waitForTrigger so
that it returns a StatePtr rather than a State. Such changes are expected and
should be part of any development process. The important thing to remember is
to test your code every time you make a change to ensure that you have not
broken anything and that you previously implemented.

16



#include "FSM.h"
#include "State.h"

#define TRUE 1
#define FALSE O

volatile StatePtr currentState;
volatile int machineIsRunning = FALSE;

/** \fn void runFSM(void)

* \brief Start the FSM running and continue until a final state is
* reached, which turns the machine off.

*

* The FSM runs by repeatedly going through the following sequence of
* steps:

* <ol>

* <1i> Execute the entry action. </1i>

* <1i> Execute the in-state action. </1i>

* <1i> Wait for a trigger. </1li>

* <1i> Execute the exit action. </1i>

* <1i> Make the transition. </1i>

* </ol>

* The <tt>currentState</tt> variable is used to identify the current
* state the machine is in. While the machine is not in the final state,
* the value of <tt>machineIsRunning</tt> will be set to TRUE. Once the
* machine transitions to the final state, the value changes to FALSE
* and the function exits.
*/
void runFSM(void)
{
machineIsRunning = TRUE;
while (machineIsRunning) {
executeEntryAction (currentState);
executeInStateAction (currentState) ;
Trigger trigger = waitForTrigger(); // TODO
executeExitAction (currentState) ;
currentState = transition(trigger);

Listing 5. Initial implementation of the FSM.

The runFSM function has short, straight forward code—an indication of well-
designed code. You can provide the function signature with the description from the

17



doxygen comments as a section in a design document. That along with a brief
diagram and description of the module structure as shown in section 3.1 gives an
interested reviewer the information needed to understand your design. It also gives
a grader confidence that you understand what your code does and that you have, in
fact, designed it.

18



Works Cited

Beck, Kent and Ward Cunningham. "A Laboratory for Teaching Object-Oriented
Thinking." OOPSLA'89 Conference Proceedings. Association of Computing
Machinery, 1989.

Dean, Frank F. What is Systems Engineering. 15 January 2009. 2 February 2009
<http://gd.tuwien.ac.at/systeng/bahill /whatis/whatis.html>.

Deitel, P.J. and H.M. Deitel. C++ How to Program, 6 ed. Upper Saddle River: Pearson
Education, Inc., 2008.

INCOSE. What is System Engineering. 2004 June 2004. International Council on
Systems Engineering. 2 February 2009
<http://www.incose.org/practice/whatissystemseng.aspx>.

Jones, Joseph L. Robot Programming A Practical Guide to Behavior-Based Robotics.
New York: McGraw-Hill, 2004.

Martin, Robert C. "UML Tutorial: Finite State Machines." June 1998. Object Mentor. 5
February 2009 <http://www.objectmentor.com/resources/articles/umlfsm.pdf>.

Object Management Group. Object Management Group - UML. 18 January 2009. 5
February 2009 <http://www.uml.org/>.

Taber, Cara and Martin Fowler. Planning and Running an XP Iteration. January 2001.
2 February 2009 <http://martinfowler.com/articles/planningXplteration.html>.

19



