
 Rbe 3001 Development board guide

The RBE Development board is designed to use an AVR644P to control a robotics

system. The Board has multiple functions and features.

Wiki

3001 Wiki: http://wiki.wpi.edu/robotics/RBE_3001

Processors

AVR 644P Main Processor

http://wiki.wpi.edu/images//images/b/be/Atmel-8011-8-bit-avr-microcontroller-atmega164p-324p-

644p_datasheet_%281%29.pdf

AVR 328P Co Processor

http://wiki.wpi.edu/images/images/9/9b/328p.pdf

http://wiki.wpi.edu/robotics/RBE_3001
http://wiki.wpi.edu/images/images/b/be/Atmel-8011-8-bit-avr-microcontroller-atmega164p-324p-644p_datasheet_%281%29.pdf
http://wiki.wpi.edu/images/images/b/be/Atmel-8011-8-bit-avr-microcontroller-atmega164p-324p-644p_datasheet_%281%29.pdf
http://wiki.wpi.edu/images/images/9/9b/328p.pdf

Programmer

ISP Programming ports for both processors

http://wiki.wpi.edu/images//images/5/5a/Pololu_usb_avr_programmer.pdf

USB Communication

FTDI 232 USART to USB serial interface

 http://wiki.wpi.edu/images//images/a/a4/DS_FT232R.pdf

SPI Devices

1 -12 bit 4 channel SPI Digital to Analog Converter (DAC)

http://wiki.wpi.edu/images//images/3/3e/10_Bit_DAC_3001.pdf

2- SPI Quadrature encoder counters

http://wiki.wpi.edu/images//images/f/f1/LS7366R.pdf

MOSFETS

4 -High Power linear Op Amps (Linear Drivers)

http://wiki.wpi.edu/images//images/5/59/Opa548.pdf

2-High Power Sinking MOSFETS

http://wiki.wpi.edu/images//images/9/99/ZXMN4A06G.pdf

Analog Sensing

2-Analog Current Sense circuits

http://wiki.wpi.edu/images//images/5/51/Lmp8601.pdf

http://wiki.wpi.edu/images/images/5/5a/Pololu_usb_avr_programmer.pdf
http://wiki.wpi.edu/images/images/a/a4/DS_FT232R.pdf
http://wiki.wpi.edu/images/images/3/3e/10_Bit_DAC_3001.pdf
http://wiki.wpi.edu/images/images/f/f1/LS7366R.pdf
http://wiki.wpi.edu/images/images/5/59/Opa548.pdf
http://wiki.wpi.edu/images/images/9/99/ZXMN4A06G.pdf
http://wiki.wpi.edu/images/images/5/51/Lmp8601.pdf

Other

8-LED’s

8-Switches

1-Sensor Interface for WPI Sensor Boards

8-Coprocessor Controlled Servo Ports

4-Analog Input ports

1-H-bridge with 2 motor outputs

AVR 644P
The 644P is a high performance, low power, low cost 8 bit microcontroller.

The microcontroller has 64 Kbytes of F lash memory, JTAG and ISP programming

ports, 2-8bit Timers/Counters, 1-16bit Timer/Counter, 8 channel 10-bit Analog-

To-Digital-Converter (ADC), 2-Serial USARTs, Master/Slave SPI. The

microcontroller is a 5V, 40 Pin Wide DIP package with an 18.432 MHz Exter nal

Crystal. It also has an internal oscillator that is not used in RBE 3001.

We are Using the Eclipse C/C++ IDE with WINAVR and the Eclipse-AVR

Plug-in to program the AVR 644P, Along with Git to access the Fusion forge

Project.

Eclipse Install
1. Download Eclipse IDE for C/C++ Developers

http://www.eclipse.org/downloads/

a. How to tell if you are running 32-bit or 64-bit

http://support.microsoft.com/kb/827218

2. Extract the Eclipse folder from the downloaded zip file to a desired location and run Eclipse from

the extracted folder.

3. Choose a workspace (where your code will be stored) and press OK.

WinAVR
1. Download WinAVR at http://sourceforge.net/projects/winavr/files/.

2. Open the WinAVR folder and open 20100110 (the most recent version).

3. Download and install WinAVR-20100110-install.exe with the default settings.

Or if you are using mac

1. Download https://www.obdev.at/products/crosspack/index.html

2. Follow the instructions on the crosspack website.

JDK
1. Download the Java Development kit at

http://www.oracle.com/technetwork/java/javase/downloads/index.html by clicking on the

Download button under JDK. If you do not have it already.

2. Accept the license agreement and download the 32-bit (x86) or 64-bit (x64) depending on your

version of Windows.

3. Install it with the default options.

http://www.eclipse.org/downloads/
http://support.microsoft.com/kb/827218
http://sourceforge.net/projects/winavr/files/
https://www.obdev.at/products/crosspack/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

AVR Install
1. Use Eclipse to install the AVR plugin (Help > Install new software)

2. In the Work with field, input http://avr-eclipse.sourceforge.net/updatesite and click add.

http://avr-eclipse.sourceforge.net/updatesite

3. In the next prompt in the name field put AVR and click OK.

4. Make sure AVR Eclipse Plugin is selected and click Next.

5. Click Next again on the Install Details screen and then accept the terms of the license agreement

and click Finish to start the installation.

6. When a Security Warning comes up saying the software contains unsigned content, click OK to

continue with the installation.

7. When asked to restart Eclipse, click Yes.

Fusion Forge Setup
1. Each member needs to create an account at https://fusion.wpi.edu

2. One person in the group needs to create the project on Fusion Forge by click the My Page

button near the top of the page.

https://fusion.wpi.edu/

3. Next, click on Register Project

4. Read the descriptions and fill out the form appropriately. Make sure for Source Code you

choose Git and for Project Template you choose WPI Git Template Project.

5. Click submit and wait up to 72 hours for an Admin to approve your project.

6. Once approved, go back to the My Page section of Fusion and select your project.

7. To add members to your group, click on the Admin page on the top.

8. Click on Users and Permissions.

9. Under Add Member, type in the Usernames of those you wish to add and press Add

Member.

OR

Select Add Users From List to see all members registered on Fusion and select who you want

to add and press Finish.

10. You can create a different Role besides Admin to prevent users from editing your files if you

want to only give them permission to view you file. To do so, under Edit Roles, type a name

into the empty field and press Create Role

11. On the next screen, select what permissions the new role has. To give allow them to only

view your project without editing, make sure the fields match the following then press

Submit.

12. Go back to Users and Permissions to assign the new role to a user.

13. Click on the drop-down arrow for the user whose role you want to change and select the

newly created role, then click Grant extra role.

14. Once added, take away the old Admin role if you created them with it by click Remove on

the Admin line.

15. If you ever need to check the URL of the location of the Git repository for your team, go to

the SCM team tab at fusion.wpi.edu and look at the URL here (in the form:

https://****@fusion.wpi.edu/git/rbelib16-17/rbelib16-17.git where *** is your UNIX

name).

Joining RBELib
1. To join RBELib, you need to request permission on Fusion Forge to the project. Open up

fusion.wpi.edu in your web browser and log in to your account.

2. Go to Joe St. Germain’s profile and find your class’s project and request permission to join it.

Joe’s profile can be found at: fusion.wpi.edu/users/joest/. The name of the project will be given

out on Blackboard. For A16 and D17 RBE 3001 RBELib 2016/17 Class code. The fusion

forge search does not work unfortunately. Feel free to complain to the CCC, we have

for a few years.

3. Wait for the Course staff to approve your request.

https://****@fusion.wpi.edu/git/rbelib16-17/rbelib16-17.git
https://fusion.wpi.edu/
https://fusion.wpi.edu/users/joest/

Using Git to clone RBELib and the example project.
1. First select Windows > Show View > Other

2. Then Select Git > Git Repositories

3. Now select Clone repository from the Git Repository Tab (sometimes opens on the right hand

side of the screen) and open it.

4. Add the address of the repository for RBELib. This address can be found under the SCM tab on

the RBELib project page on fusion.

5. Login to the repository using your CCC password

6. Make sure the master branch is selected and then press Next.

7. Check the box for “Import all existing Eclipse projects after the clone finishes” and then set the

destination directory to your workspace. to select “finish”

It is possible that the Import all existing projects option will not be available. If that is the case

simply click finish and follow the following step.

1.1 Right click on the repository and select import projects.

1.2 Then select “import existing projects” and click next.

1.3 Select the Example project and the RBElib project only, and click finish. Now you have 2

projects in the project explorer window.

8. Now you should have 2 projects in your project explorer tab.

9. Be sure to disconnect the projects from the course page and reconnect to your team’s

repository. This can be done by right clicking on each project in the project explorer tab and

selecting “team > Disconnect”

10. Now follow the previous steps to add your team’s repository location to eclipse.

11. Then right click on each project and select “Team >

share project” and selecting your teams repository.

12. At this point you can use any Git program or command line tool that your team chooses to share

your project amongst yourselves. Although you must use the Fusion server as the remote

location.

13. Make sure to build RBELib once before using or building the example project.

Creating a New Project
These steps have been completed for you in the example project but are left in this document for your

reference.

1. Make sure you have your Git project setup properly.

2. Select File > New > C Project

3. Name your Project and Select AVR Cross target Application > empty project > AVR-GCC Tool

chain and press Next.

4. Deselect Debug and press next

5. Select the Atmega 644P and Enter the MCU Frequency (18,432,000) and press Finish

6. Now That we have the project created we need to link the RBELib to the project. Right Click

on the Project in the Project Explorer and select properties

7. Expand C/C++ Build > settings

8. Select AVR C Linker > Libraries

9. In the Libraries Section hit the + Button

10. Enter ‘RBELib’, then do it again but this time enter ‘m’ which will include the math library

library.

11. In the Library Path Section hit the + Button

12. Click on Workspace, Expand RBELib and choose Release. Select OK on this window and OK

again on the next.

13. Your window should now look like this.

14. Now select the AVR C Linker > General and on the Other Arguments line enter:

-Wl,-u,vfprintf -lprintf_flt –lm

Which enables printf() to be used with all of the options typically disabled. Your window

should now look like the below image.

15. Now Select C/C++ General > Paths and Symbols and select Add

16. Choose the Workspace button

17. Go to RBELib > include

18. Click OK and OK again on the next screen.

19. You should now have something like the following.

Setting up your programmer
1. Set your programmer to AVR > AVRDude. If you get an Error about invalid values, press OK,

and Press OK again to save your settings and restart Eclipse. Then re-open the project

properties and try again. This is a common error in Eclipse and could happen multiple times.

2. Select the Programmer Tab and select New

3. Type an identifying name for this configuration, select Atmel AVR ISP V2 and type in the

COM port that the programmer is connected to and press OK. See the sub-steps if you don’t

what your COM port is or how to find it, otherwise skip them.

a. If you need to find your COM port, go to Start > Devices and Printers and right click

your device and go to properties

4. Go the hardware tab, and hover over the Programming Port to see what port the ISP uses.

5. Make sure your configuration is selected in the dropdown, then press OK to close this

window and accept your settings.

Accessing the Fuses from eclipse
The Fuses control which hardware features you would like enabled. The Fuses can

control a number of features such as Crystal selection, brownout detection, or to

enable JTAG. For our Purposes we need to set the Fuses to

(Low: CF), (High: D1), (Extended: FF).

1 Right click on your project and select properties.
2 Select AVR > AVRDude
3 Open the Fuses Tab, choose direct hex values and enter CF D1 FF into the appropriate fields.

Creating a Source File, Building, and Downloading
Now That the Project is created, the RBELib is checked out and linked, and the fuses and programmer

are set we are ready to begin our source file.

1. Right click on your project and select “New” >” Source File”

2. Name your Source File something.c (do not forget the .c)

3. Include RBELib and the AVRIO header files, see the below examples for reference.

4. Build RBElib using the hammer button.

5. Once your done coding build your project by selecting your project in the project explorer and

either press the hammer or by Project > Build Project.

6. Then Upload the hex file that was created by selecting your project and pressing the “AVR”

button. If the build was not successful then refer to the Console window to see the error info. If

the build was not successful then there is no .hex file to upload and you need to fix your errors

first.

PuTTY
1. Download PuTTY from http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

and choose the Intel x86 putty.exe.

2. Run the exe file to open PuTTY, there is no install process.

3. In the Session category, choose serial, input your baud rate and your serial line.

4. To log data, click on Logging and choose All Session Output and click browse for where to put

your file. To save it for Excel or Matlab, make sure to make the extension *.csv.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

5. If your code is formatted properly, your output will be logged into a file that can easily be

opened by Excel/MATLAB to parse.

The structure that your print statements should be in is the following (note, the commas are REQUIRED

for comma separated value file format *.csv):

Print Column Title 1, Print Column Title n \n (or new line)

<Loop to sample values>

 Print Value 1, Print Value n \n (or new line)

<end loop>

This format will give you proper output for parsing.

Example blink port program
Blinks all pins on port B

*Note in order to connect a pin or port to an LED or switch a connection must be

made between the pin or port to either the LED or Switch breakout port. To use

printing statements, you must first write debugUsartInit()and putCharDebug().

/*

 * main.c

 *

 * Created on: Aug 6, 2014

 * Author: ewillcox

 */

#include "RBELib/RBELib.h" //RBELib

int main(void){

 initRBELib(); //Setup printf() and setServo()

 debugUSARTInit(115200); //Initialize UART

 DDRB = 0xFF; //Set Port as output

 while (1){

 PORTB = 0xFF; //Turn port on

 _delay_ms(500); //Delay .5 sec

 PORTB = 0x00; //Turn port off

 _delay_ms(500); //Delay .5 sec

 printf("Hello\n\r"); //Print “Hello”

 }

 return 0;

}

Example Blink Pin program
Register Structures

“Reg Structs” is built into RBELib and allows you to address individual bits

instead of whole registers.

/*

 * main.c

 *

 * Created on: Aug 6, 2014

 * Author: ewillcox

 */

#include "RBELib/RBELib.h" //RBELib

int main(void){

 DDRBbits._P4 = OUTPUT; //Set Port B Pin 4 to output

 while(1){

 PINBbits._P4 = 0; //Sets Port B Pin 4 to low

 _delay_ms(100); //Delay .1 sec

 PINBbits._P4 = 1; //Sets Port B Pin 4 to high

 _delay_ms(100); //Delay .1 sec

 }

 return 0;

}

Now that we have some code, we can upload it to our Git repository. To add a project the first time to

the repository, right click your folder in the project explorer and click on Team > Share Project. Select

Git as the repository type and click next, then make sure Use existing repository location is selected and

pick your groups repository and click Finish. You may be asked to type in a comment for your commit,

you can put in anything and press OK.

Once you’ve committed the project at least once, in the future you only need to click on your project

and go to Team > Commit and then put in a comment and it will upload whatever files have been

updated.

Splitting Files
You should split your code into multiple files by using header files with

corresponding C files , each file would contain code relevant to the file it’s in . Ex,

you put your initialization code into a file called init.c, your motor driving code

into motors.c, etc.

You can also include global variables in a header file and share them amongst all

your files.

General layout of a header file:

/*

 * ex_header.h

 *

 * Created on: Aug 6, 2014

 * Author: ewillcox

 */

#ifndef EX_HEADER_H_

#define EX_HEADER_H_

//Declarations / constants / includes / etc.

//Actual code (logic) does NOT go here!

#endif /* EX_HEADER_H_ */

If we wanted to separate the blink program into multiple files, we could create

another file for controlling port B which does the LEDs. The first will be a header

file which will have all of our includes in it so we only have to include this one file

after it’s setup.

/*

 * main.h

 *

 * Created on: Aug 6, 2014

 * Author: ewillcox

 */

#ifndef MAIN_H_

#define MAIN_H_

#include "RBELib/RBELib.h" //RBELib

#include "portB.h"

#endif /* MAIN_H_ */

The next file is the header file for port B.

/*

 * portB.h

 *

 * Created on: Aug 6, 2014

 * Author: ewillcox

 */

#ifndef PORTB_H_

#define PORTB_H_

#include "main.h"

#define PORT_OUTPUT 0xFF

void initPB();

void blinkAll(double timeDelay);

#endif /* PORTB_H_ */

Now we need the .c file that has all of the code to control the port.

/*

 * portB.c

 *

 * Created on: Aug 6, 2014

 * Author: ewillcox

 */

#include "main.h"

void initPB(){

 DDRB = PORT_OUTPUT;

}

void blinkAll(double timeDelay){

 PORTB = 0xFF;

 _delay_ms(timeDelay);

 PORTB = 0x00;

 _delay_ms(timeDelay);

}

And finally our main code.

/*

 * main.c

 *

 * Created on: Aug 6, 2014

 * Author: ewillcox

 */

#include "main.h"

void initializations(){

 initPB();

}

int main(){

 initializations();

 while(1){

 blinkAll(100);

 }

 return 0;

}

If you wanted to share your globals from one file, you can create a header file to

declare them all, and initialize them (if desired) in a c file by doing the followi ng.

/*

 * globals.h

 *

 * Created on: Feb 6, 2013

 * Author: joest

 */

#ifndef GLOBALS_H_

#define GLOBALS_H_

typedef struct {

 double timeCount;

} Globals;

extern Globals globals; // declaration

void initGlobals();

#endif /* GLOBALS_H_ */

/*

 * globals.c

 *

 * Created on: Feb 6, 2013

 * Author: joest

 */

#include "globals.h"

Globals globals;

void initGlobals() {

 globals.timeCount = 0;

}

You can now call timeCount by adding in globals.h into our previous main.h and

then calling globals.timeCount where you want to get the value.

Common Problems

A lot of problems in Eclipse can be solved by either restarting the program or by making a new project

and copying your code over. Please try this first if nothing below works for you before asking for help.

Error 1 / a lot of code not being recognized
Make sure you included all of your header files (#include), especially RBELib. If you do have all of your

necessary headers included (in each .c file!) make sure you setup the project correctly, re-check all the

steps from above. If both of these are correct restart Eclipse, and if the error still persists try to make a

new project and copy your code over.

Component X is not working
If you DAC/Current Sensor/FTDI/etc isn’t working, check that all jumpers are properly set on the board.

Also make sure that you didn’t leave switches connected from Lab 1 if you are not using them!

Current sensor is outputting a waveform
See Joe, it’s broken.

