How to Make a Presentation (Do as I say, not as I do)

N. Aaron Deskins

What a presentation is

- A story
- A method to make science better (share results)
- Your chance to show off
- An interview
- A learning opportunity

The Story

- Must connect with Audience
 - Must not be too technical
- Show why the problem you are studying is important
 - motivate why you are studying what you study
- Show why your approach is good
 What makes you different?
- Show why your results are meaningful

- Why should they listen to you?

Text Killers

- bafasdfasdfasdfasdfasdfasddfasddf
- asdfasdfasdfasdfasdfasdfasdfasdfasd
- fasdfasdfasdfasdfasdfasdfasdfasdf
- asdfasdfasdfasdfasdfasdfasdf
- asdfasdfasdfasdfasdfasdf
- fasdfasdfasdfasdfasdfasdfasdfasds
- fasdfasdfasdfasdfasdfasdfasdfas
- fasdfasdfasdfasdfasdf

Pictures Tell Everything

See this resource for some good examples: <u>http://www.writing.engr.psu.edu/presentations/speaking.pdf</u>

Outlines – don't need them

- After two slides, no one will remember anything on the outline slide, and no one knows what the outline means until you show your material
- Graphical Outline is 'ok' for *long* presentations, but after introduction

Overview of Topics

Charge Transport Mixed Phase Catalysts \Box H₂O/O₂ Reactivity **O**rganic Molecule Reactivity

Introduction

- Tailor your introduction to your audience
 - If your audience is not in your field, spend more time on basics
 - If you audience knows your field, go more for specifics
 - Try to put your work in the context of what has already been done
 - Show why your work is important
- Probably most important part of talk!

Why Solar Energy?

Energy Demand ↑

Solar Energy
 'limit-less' supply

Clean Supply

TiO₂ has many photocatalytic uses

Organic molecule decomposition
 Wastewater treatment
 Protective coatings

■ Water-splitting ■ $H_2O \rightarrow H_2 + \frac{1}{2}O_2$

Solar cells
 Direct electricity generation

Solar Cell (www.iea-pvps.org)

Fabric Sheet (Kanagawa Photocatalyst Museum)

Example of catalysis

A study of the photocatalytic processes over TiO₂ could lead to better catalyst design

Photocatalytic Process Overview

photoexcitation
charge diffusion, trapping, and recombination
molecular adsorption and reaction

Put question that you will answer/address here

Fancy Graphic Here

Results

- Convince Audience why you are awesome!
- Present evidence for solving your problem
- Show results using graphs, figures, and occasionally figures

Adsorbate Electronegativity is Key to Electron Transfer

 $\chi_{TiO_2} > \chi_{Adsorbate}$

 $\chi_{TiO_2} < \chi_{Adsorbate}$

$$\Delta E_{ads} = E_{ads-Ov} - E_{ads-clean}$$

$$O_{v} has no effect on adsorption$$
when $\Delta E_{ads} = 0$

Little electron transfer when $\Delta E_{ads} = 0$

Onda, K.; Li, B.; Petek, H. Physical Review B 2004, 70, 045415.

Conclusions

- Short, sweet, to the point.
- Remind audience why your research is awesome.

Summary

Charge Transport Mixed Phase Catalysts \Box H₂O/O₂ Reactivity Organic Molecule Reactivity

Answering Questions

- Repeat the question (gives you time to think).
- If you don't know the answer, simply say "I'm not sure, but I'll look into it."
- Never get into an argument.
 - "That's an interesting point. I'll have to think about it."

Format (depends on time available and audience)

1 - 2 minutes per slide

Section	General Audience	Specialized Audience
Introduction	4-7 Slides	2+ Slides
Computational Details	1 Slide (overview of molecular modeling)	1-2 Slides (details of method)
Results	Multiple Slides	Multiple Slides
Conclusions	1 Slide	1 Slide
Acknowledgments	1 Slide	1 Slide
Back-up Slides	0+	0+

General Tips

- Use color and attractive graphics
- Pay Attention to Design (font size, etc.)
- Memorize the first 2 minutes of your presentation
- Show enthusiasm!
 - This is your research!
- Don't mind criticism
- Practice, practice, practice